# Model Geometry¶

This document explains several constants related to the geometry of an STT model.

## n_input¶

Each of the at maximum `n_steps`

vectors is a vector of MFCC features of a
time-slice of the speech sample. We will make the number of MFCC features
dependent upon the sample rate of the data set. Generically, if the sample rate
is 8kHz we use 13 features. If the sample rate is 16kHz we use 26 features…
We capture the dimension of these vectors, equivalently the number of MFCC
features, in the variable `n_input`

. By default `n_input`

is 26.

## n_context¶

As previously mentioned, the RNN is not simply fed the MFCC features of a given
time-slice. It is fed, in addition, a context of \(C\) frames on
either side of the frame in question. The number of frames in this context is
captured in the variable `n_context`

. By default `n_context`

is 9.

Next we will introduce constants that specify the geometry of some of the non-recurrent layers of the network. We do this by simply specifying the number of units in each of the layers.

## n_cell_dim¶

Hence, we are free to choose the dimension of this cell state independent of the
input dimension. We capture the cell state dimension in the variable `n_cell_dim`

.